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Abstract

One of the main difficulties when running Arbitrary Lagrangian-Eulerian (ALE)
simulations is determining how much to relax the mesh during the Eulerian step. This
determination is currently made by the user on a simulation-by-simulation basis. We
present a Learning Algorithm-Generated Empirical Relaxer (LAGER) which uses a
regressive random forest algorithm to automate this decision process. We also demon-
strate that LAGER successfully relaxes a variety of test problems, maintains simula-
tion accuracy, and has the potential to significantly decrease both the person-hours
and computational hours needed to run a successful ALE simulation.

1 Motivation and Background

Lagrangian hydrodynamics simulations (in which the mesh moves with the fluid) can cause
distortions in the mesh due to fluid motion. Such distortions arise especially in problems
which include turbulence, interfaces between materials, complex geometries, etc. Severe
distortions of zones can cause unwanted non-physical calculations of certain values such
as negative volumes or densities. When distorted zones begin to induce such non-physical
calculations, this may cause the simulation to crash, and we say that zone has ”tangled.”

Avoiding tangled zones while retaining the accuracy benefits of a Lagrangian simulation
over pure Eulerian is the goal of the Arbitrary Lagrangian-Eulerian (ALE) approach. Thus
we seek a balance between performing too much relaxation (which can diminish accuracy)
and performing too little relaxation (which may result in tangled zones). Finding such a
balance is one of the main difficulties facing those who wish to perform ALE simulations.
The current system for determining when a zone needs to be relaxed involves the manual
creation and tuning of some relaxation criteria by the user. This “by-hand” approach to
relaxation often results in a trial-and-error period in which the user runs several simulations
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of a given problem while varying these criteria until a satisfactory result is obtained. This
process of setting the criteria for by-hand relaxers is highly subjective (it is up to the user
to decide what the appropriate level of relaxation is), brittle (as a small change in initial
conditions can break the ALE strategy), and highly expensive in terms of both user and
computational time.

Our goal is to automate the relaxation of the mesh through the use of a machine
learning algorithm. This algorithm will be trained on various simulations which produce
tangled zones, learning what conditions may lead to tangling. After training, the algorithm
is then deployed to perform real time predictions during a simulation and used as the new
relaxation criteria. Thus we call this new approach to relaxation a Learning Algorithm-
Generated Empirical Relaxer (LAGER). Our primary goal for LAGER is to reduce overall
time spent generating by-hand relaxers while still accomplishing the goals of ALE: retaining
a high level of accuracy while avoiding tangled zones. We also hope that LAGER will
achieve these goals on a wide class of problems without the need for training on each
particular problem.

The learning algorithm we chose to use for LAGER is a regressive random forest al-
gorithm. Section 2 gives some general information on random forests and why they are a
good choice for this application. Section 3 details the training process we employed as well
as the implementation of the algorithm as a relaxer. We found that LAGER was capable of
successfully relaxing a variety of test problems, retaining physical accuracy, and preventing
zone tangling. Also, though we have not yet optimized LAGER in terms of computational
efficiency, we found it to be competitive in terms of computational time with the by-hand
relaxation strategies in place. These results, as well as some discussion of the effect of
training on different data sets are presented in section 4.

2 Random forest algorithms

The learning algorithm employed by LAGER is a regressive random forest algorithm. A
random forest algorithm is an ensemble method based on creating a set of decision trees.
Each decision tree is based on a random subset drawn with replacement from the training
data. The creation of splits when growing each decision tree is then based on a random
subset of features. Thus the algorithm generates a diverse set of decision trees which all
vote in order to make predictions on new data[1].

Random forest algorithms are favored among many applications due to their demon-
strated robustness and accuracy, and they are well suited to our task of predicting zone
tangling. The ensemble of decision trees built using different features automatically gives
more weight to the most discriminating features (i.e. the features most important for pre-
diction). It is unclear a priori what features are most important when determining whether
a zone may tangle in a given situation, so the fact that the random forest algorithm can
determine the importance of features on its own is a very attractive attribute. Also random
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forests are robust to large and somewhat noisy training data. This is also important for us
since our process for generating training data is potentially noisy.

Random forests may be used as classifiers or as regressive algorithms. A regressive
algorithm gives us the ability to adjust the amount of relaxation performed on a given
zone. This is in contrast to the current by-hand relaxers which simply flag zones for
relaxation (i.e. relaxation is “all or nothing” for a given zone). Thus we hope the choice
of a regressive algorithm will lead to more efficient relaxation by allowing us continuous
control over the relaxation process.

3 Implementation of LAGER

We now detail the implementation of LAGER in KULL, a radiation and hydrodynamics
code under development at Lawrence Livermore National Laboratory[8]. Though we may
refer occasionally to specific features of KULL, all of the procedures outlines below should
be generalizable to any other ALE code already in use. We used an open source regressive
random forrest algorithm distributed as part of the Scikit-Learn module for Python[7].
Section 3.1 will deal with the generation of data used to train the random forest algorithm,
and section 3.2 will explain how predictions made by a trained algorithm are used to
perform relaxation during the Eulerian step of ALE.

3.1 Data generation

In order to train the random forest algorithm, we first had to generate a training data set.
Our goal was to obtain geometric feature data (the verdict metrics in KULL) on zones with
various risks of tangling. Figure 1 displays some example zones with associated features.
In order to generate a data set including zones with various levels of risk for tangling, we
repeatedly ran simulations with no global criteria for relaxation until tangling occurred.
The simulation was then restarted, now with zones which had previously tangled marked
for constant relaxation (the idea being that now the simulation would proceed a bit farther
until some other zone tangled). The geometric feature data was stored at each simulation
cycle for each zone, giving us a large data set from which to select the information we
wished to train on.

We chose two classic hydrodynamic problems to run repeatedly during data generation.
Both involved disparate density gas systems subjected to shocks: the first was a helium
bubble in air subjected to a planar shock, and the second was a perturbed air-SF6 interface
also driven by a planar shock, generating a Richtmeyer-Meshkov instability. To generate
the data, we used a coarse mesh for each problem: the bubble shock problem used a 2-
dimensional, polar-coordinate mesh with approximately 2,800 zones concentrated in and
around the helium bubble (for a problem size of 65cm×9cm); the RM problem used a
3-dimensional slice (a single zone thick) with 3,220 zones concentrated near the instability
interface (for a problem size of 218cm×6cm).
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Figure 1: Some example zones included in the training set. We list a few of the geometric
quantities included as feature data for each zone (note that this is not a complete list of the
geometric features used). Also displayed is the associated φ value we assign as a measure
of risk for tangling.

Since random forests require supervised learning, we then needed some way of assigning
a “risk of tangling” value (which we will denote φ) to each zone in the training set. All
zones at the beginning of a simulation were added to the training set as zones with no risk
of tangling, and we assigned the value φ = 0 to each. Zones in a tangled state were assigned
value φ = 1 and added to the training set. To establish a smooth transition between the
extreme states of φ = 1 (tangled) and φ = 0 (no risk of tangling), we then designed three
different transition functions for φ in terms of the number of cycles before a zone tangled.
Since we saved information on each zone at every cycle, we were able to extract feature
data on a tangled zone any number of time steps before the zone actually tangled. We
implemented three different transition functions in order to experiment with weighting the
φ values differently according to how close a zone was to tangling. The transition functions
we used can be seen in Figure 2. We also experimented with varying the length of the
transition functions: the number of cycles before tangling for which the value of φ dropped
to zero was set to 10, 20, and 50 cycles for each transition function.

In addition to data on tangled zones, we also gathered data on zones which caused
a small simulation time step. During a simulation in KULL, the amount of time the
simulation may advance on each cycle is limited by the CFL condition (source?) in the
hydrodynamics solve, so very thin zones will cause very small simulation time steps. This
can be a major problem if time steps become so small that it becomes infeasible to run
simulations to a desired late time. Thus we added to the training set zones which caused a
simulation time step lower than a set threshold. Again, the transition functions described
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Figure 2: Different shapes of transition functions (functions of φ for a given zone vs. the
number of cycles before that zone tangled): a) linear function b) logistic, c) piecewise
constant/cosine (constant for half of the support, then a cosine decay to zero).

above were used to set values of φ for these zones in terms of the simulation time step
(instead of in terms of cycles before zone tangling).

Varying the shape and length of the transition functions as well as selecting for which
simulated problem we took data from allowed us to train several different random forest
algorithms. In section 4, we discuss some of the observed differences produced by manip-
ulating the training data in this way.

3.2 Relaxation via LAGER

We now describe how predictions from the trained algorithm are used to relax the mesh
during a simulation. As we described above, LAGER is trained on some geometric features
to determine a zone’s risk of tangling. Relaxation occurs on a node by node basis, however.
In order to make the transition from the zone-based predictions from the random forest
algorithm to the node-based decision of how much to relax, we simply take an average over
a given node’s neighboring zones. We assign a value Φ = 1

n

∑
φi to each node, where n is

the number of adjacent zones, and the φi’s are the predictions from the algorithm for each
of those adjacent zones.

We then take advantage of a functionality built into KULL which simply performs
the Eulerian relaxation step for every node at every time step. Thus KULL calculates a
relaxation vector ~v for each node. We then scale this vector for each node by the associated
Φ value. Thus the relaxation for that node is scaled according to the predicted risk of its
adjacent zones tangling. In this way, LAGER can dynamically and smoothly manipulate
the amount of relaxation taking place at any specific point in the grid at each simulation
cycle. A visualization of this process is displayed in Figure 3.

4 Results and discussion

We will discuss in the following subsections some results obtained running simulations
with LAGER as the sole relaxer. We discuss LAGER’s success relaxing a variety of test
problems, the differences seen in the performance of LAGER when we train on different
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Figure 3: Relaxing via LAGER: for each node, we average predictions φi made for adjacent
zones; we then use this average to scale the relaxation vector ~v calculated by KULL.

data sets, as well as it’s computational cost.

4.1 Relaxing test problems

As mentioned in section 3.1, when training LAGER, we generated training data on simula-
tions of a helium bubble shock tube problem and a Richtmyer-Meshkov instability problem.
These problems also served as test problems for the trained algorithm. Though trained
on coarsely meshed versions of each of these problems, LAGER successfully relaxed much
more finely meshed versions of both the bubble shock and the Richtmyer-Meshkov insta-
bility problems (up to 36 times the coarse number of zones for the bubble shock problem,
and up to 81 times coarse number of zones for the Richtmyer-Meshkov problem). Not only
did the simulations run without encountering tangled zones, the simulation time step was
kept appropriately large, allowing us to reach late simulation times in far fewer cycles than
were required when using the by-hand relaxers (see Table 1).

In addition, we used LAGER to relax a simulation of the ablation of a hohlraum wall
using lasers. Though these simulations incorporate much more complicated physics than
the the simple hydrodynamics problems posed above, and despite the fact that LAGER
received no training on data generated by running this problem, LAGER was able to
successfully perform relaxation in this scenario. This result along with LAGER’s success
in relaxing the finely meshed hydrodynamics problems suggests that the LAGER does
achieve a certain amount of robustness across multiple problems usually not achievable
through the use of by-hand relaxers.

Apart from prevention of tangled zones, we also demand that we preserve accuracy
when using LAGER (i.e. we wish to demonstrate that LAGER is not simply over-relaxing
our simulations). To assess the accuracy of our simulations using LAGER, we compared a
simulation of the Richtmyer-Meshkov instability problem with experimental results from
Collins and Jacobs[3]. As can be seen in Figure 4, we were capable of replicating the
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Bubble Shock Problem: Minimum simulation time step Cycles to reach goal time

Using LAGER O(10−1) shakes ∼71,000
Using by-hand relaxers O(10−2) shakes ∼252,000

R-T Shock Tube Problem:

Using LAGER O(10) shakes ∼35,700
Using by-hand relaxers O(10−9) shakes ∼57,600

Hohlraum Wall Problem:

Using LAGER O(10−11) shakes ∼26,100
Using by-hand relaxers O(10−11) shakes ∼35,300

Table 1: This table shows the minimum simulation time step encountered and the number
of cycles required to achieve a late goal time for each of the test simulations (comparing
simulations using LAGER to simulations using by-hand relaxers for each).

experimental results quite accurately using LAGER.

4.2 Training on different datasets

As mentioned in Section 3.2, we varied several different factors in the creation of the
training data and produced several different random forest algorithms based on the re-
sulting data sets. Namely, we varied: the shape of the transition function; the length
of the transition function; and the simulated problem from which the data was obtained.
Comparing different transition function shapes, we found the logistic function produced the
least reliable results (occasionally resulting in tangling during a simulation). The piecewise
constant/cosine and linear functions produced similar results and both reliably avoided tan-
gling. Varying the lengths of each of these functions resulted only in very subtle changes in
simulation results, and results from each was satisfactory. For simplicity, we therefore re-
strict the remainder of our discussion to the case of the piecewise constant/cosine function
with support from 0 to 50 cycles before zone tangling.

The most interesting variations in performance of LAGER arose from choosing which
simulation problem training data was generated on. We trained random forest algorithms
on data sets coming exclusively from the bubble shock problem, exclusively from the
Richtmyer-Meshkov problem, or a combination of both data sets. The different geome-
tries and physical regimes of these two problems produce zones which tangle in different
fashions for each problem (when run without relaxation), creating data sets with different
characteristics. This translates into very different behavior of the random forest algorithms
trained on the different data sets.

We first examine this difference in behaviors qualitatively. Figure 5 displays snapshots
of the same simulation time from three different simulations running LAGER trained on
each data set. These snapshots show the differences in how LAGER assigns φ values to
each zone depending the training set used to construct the random forest. An algorithm
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Figure 4: Simulation results using LAGER for relaxation (red outline defines the interface
calculated in simulation) overlaid on experimental photos[3].

trained on the Richtmyer-Meshkov data appears to apply a small amount of relaxation
to most zones in a large area around the interfaces in each simulation, while the other
algorithms display more targeted relaxation, yielding larger φ values on fewer zones.

We may also obtain some quantitative measure of how the algorithms trained on each
data set differ from one another. In Figure 6, we plot the total amount of relaxation
occurring per cycle as well as cumulative relaxation over the course of the simulation
vs. simulation time for each hydrodynamic test problem. For the bubble shock problem,
we see that the by-hand relaxers end up performing significantly more relaxation than
LAGER. In the Richmyer-Meshkov problem, however, we see the opposite effect: the
by-hand relaxers actually perform less overall relaxation. In general, we associate over-
relaxation with loss of physical accuracy. In the case of the Richtmyer-Meshkov problem,
however, we have already verified in Section 4.1 that our simulation results agree very
closely with experimental results. So the additional relaxation occurring due to the use
of LAGER in the Richtmyer-Meshkov problem appears to not have a negative impact on
accuracy in this qualitative comparison.

As to the difference between random forest algorithms trained on different data sets,
the quantitative results agree with the trend we see in our qualitative analysis. For the
bubble shock problem, we see that the algorithm trained on the Richtmyer-Meshkov data
performs more relaxation overall than the algorithms trained on the other data sets. For
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Figure 5: Snapshots from the same simulation time during simulations using LAGER
trained on data coming from the bubble shock problem, the Richtmyer-Meshkov problem,
or a combination of those two data sets. The top snapshots show a density plot (to more
clearly show the state of the bubble or instability), while the bottom snapshots show the
φ values assigned by LAGER to each zone.
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the Richtmyer-Meshkov problem, again both the algorithms trained on individual data sets
are relaxing more than the algorithm trained on the combined data sets. This indicates
that the combination of both data sets yields the most strict relaxation criteria (yielding
the most closely Lagrangian simulations). Again, there is some trade off here between
amount of relaxation and the size of simulation time step: the combined data set yields a
stricter algorithm which may benefit accuracy in some cases but may also produce longer
simulations due to less relaxation of those zones causing small time steps.

Figure 6: The top row shows the amount of relaxation (combined magnitude of all re-
laxation vectors) on each cycle vs. simulation time, comparing the by-hand relaxers and
LAGER trained on each data set. The second row shows the cumulative relaxation done
over the course of the entire simulation vs. the simulation time for by-hand relaxers vs.
LAGER trained on each data set.
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4.3 Computational costs

While we did not spend any time optimizing the incorporation of LAGER into KULL in
terms of computational speed, we still desired to get some idea of the computational expense
of using LAGER. In Figure 7, we show a comparison of computational time required to run
the bubble shock and shock tube problems using by-hand relaxers vs. LAGER. For each
problem, relaxation only begins to occur just before zone tangling starts to become an issue
(at 65,000 sh for the bubble shock problem and 450,000 sh for the shock tube problem).
For the bubble shock problem we see that LAGER trained on the bubble shock and shock
tube data sets actually reaches late simulation times faster than the by-hand relaxers (while
LAGER trained on the combined data set is slightly slower). This may seem surprising,
since generating predictions with the random forest algorithm is much more expensive than
simply deciding relaxation based on user defined criteria. Recall, however, that LAGER
attempts to maintain an appropriately large simulation time step. Thus we observe that
for the bubble shock problem, the by-hand relaxers require many more cycles than LAGER
to reach late simulation times, resulting in overall greater wall clock time. For the shock
tube problem, the by-hand relaxers outperform the LAGER relaxers in the sense of wall
clock time spent vs simulation time achieved. This does not capture the fact, however,
that constructing the by-hand relaxers requires a significant number of simulation runs to
tune, which demands a significant amount of both computational and user time.

Figure 7: Computational cost of simulations using LAGER trained on the different data
sets vs. by-hand relaxers.

5 Conclusion

We presented a machine learning approach to automating the relaxation process for Arbi-
trary Lagrangian-Eulerian simulations. Our Learning Algorithm-Generated Empirical Re-
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laxer utilizes a random forest algorithm which makes predictions about a zone’s likelihood
of tangling during a simulation. We showed that training the algorithm on data generated
by some simple, coarse meshed test problems is sufficient for LAGER to successfully relax
more finely meshed problems as well as more complicated multi-physics problems such as
the ablation of a hohlraum wall by lasers. We also demonstrated the physical accuracy of
simulations using LAGER by comparing simulation results to experimental data. Though
LAGER adds a significant amount of computational cost per cycle, its reduction in the
number of cycles required to attain late simulation times makes it competitive with the
current by-hand relaxation schemes in place. The especially attractive feature of LAGER
is that it may potentially be used without modification for a wide variety of problems,
eliminating the need for users to spend significant person-hours and computational time
creating problem-specific relaxation criteria by hand.

In this paper we began exploring some of the factors which affect the performance of
LAGER. This performance is wholly dependent upon the training data. We found that
data sets generated on different simulation problems may yield significantly different results
in terms of the overall relaxation strategy LAGER uses. A better understanding of how to
generate good training data as well as a more detailed grasp of the effects of that training
data on the performance of LAGER are therefore the most significant further topics of
interest.
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